Warning: Creating default object from empty value in /home/users/j/jinn/domains/pcbget.ru/components/com_sh404sef/shInit.php on line 57
ЗАЗЕМЛЕНИЕ В СИСТЕМАХ СО СМЕШАННЫМИ СИГНАЛАМИ
Главная Статьи ЗАЗЕМЛЕНИЕ В СИСТЕМАХ СО СМЕШАННЫМИ СИГНАЛАМИ
ЗАЗЕМЛЕНИЕ В СИСТЕМАХ СО СМЕШАННЫМИ СИГНАЛАМИ
-

ЗАЗЕМЛЕНИЕ В СИСТЕМАХ СО СМЕШАННЫМИ СИГНАЛАМИ

Уолт Кестер, Джеймс Брайант, Майк Бирн 

iСовременные системы обработки данных обычно содержат в себе устройства со смешанными сигналами (mixed-signal devices), такие как аналого-цифровые преобразователи (АЦП), цифро-аналоговые преобразователи (ЦАП), а также быстродействующие цифровые сигнальные процессоры (DSP). Обработка аналоговых сигналов требует большого динамического диапазона, поэтому возрастает роль высокопроизводительных ЦАП и АЦП. Обеспечение широкого динамического диапазона с низкими шумами во враждебном цифровом окружении возможно только при использовании эффективных приемов проектирования высокоскоростных схем, включающих в себя технически грамотную трассировку сигнала, развязку и заземление.

В прошлом "высокоточные низкоскоростные" схемы обычно рассматривались отдельно от так называемых "высокоскоростных" схем. В том, что касается АЦП и ЦАП, частота отсчетов (или обновления на выходе) обычно рассматривалась как критерий скорости работы схемы. Однако следующие два примера показывают, что на практике большинство современных ИС обработки сигналов являются "высокоскоростными" и поэтому должны рассматриваться как таковые для достижения хороших результатов. Это касается цифровых сигнальных процессоров (DSP), АЦП и ЦАП.

Все АЦП выборки (АЦП со схемой выборки-запоминания), используемые в системах обработки сигналов, работают с достаточно высокоскоростными генераторами тактовых импульсов с малым временем нарастания и спада (обычно несколько наносекунд) и должны рассматриваться как высокоскоростные устройства, даже если их производительность (частота отсчетов) представляется невысокой. Например, 12-разрядный АЦП последовательного приближения (SAR) типа AD7892 работает при внутренней тактовой частоте 8 МГц, тогда как его частота отсчетов составляет только 600 кГц.

Для сигма-дельта (Σ-Δ) АЦП также требуется высокочастотный тактовый генератор, т.к. такие АЦП имеют высокий коэффициент передискретизации. 16-разрядный АЦП AD7722 имеет частоту обновления на выходе (эффективную частоту отсчетов), равную 195 кГц, но в действительности производит выборку с частотой 12.5 МГц (в 64 раза выше). Даже так называемые низкочастотные сигма-дельта (Σ-Δ) АЦП промышленного назначения с высоким разрешением (имеющие частоту обновления на выходе от 10 Гц до 7.5 кГц) работают при тактовой частоте 5 МГц или выше и обеспечивают 24-разрядное разрешение (например, микросхемы фирмы Analog Devices типа AD7730 и AD7731).

Еще более осложняет вопрос то, что ИС со смешанными сигналами содержит как аналоговую, так и цифровую части, и поэтому многие возникающие проблемы связаны с неправильным заземлением. К тому же некоторые ИС со смешанными сигналами имеют относительно низкие цифровые токи, в то время как у других они велики. Во многих случаях с точки зрения оптимального заземления эти два варианта должны рассматриваться отдельно.

Проектировщики цифровых и аналоговых устройств склонны рассматривать устройства со смешанными сигналами с различных позиций, и цель этой главы – разработать общую философию заземления, которая будет работать в большинстве устройств со смешанными сигналами, без необходимости изучения специфических деталей их внутреннего устройства.

ПОВЕРХНОСТИ ЗАЗЕМЛЕНИЯ И ПИТАНИЯ

Обеспечение низкоимпедансных заземляющих поверхностей большой площади очень важно для всех современных аналоговых схем. Заземляющая поверхность действует не только как низкоимпедансный обратный тракт для развязки высокочастотных токов (вызванных работой скоростных цифровых схем), но также минимизирует электромагнитные радиочастотные (EMI/RFI) помехи. Благодаря экранирующему действию заземляющей поверхности чувствительность устройства к внешним помехам также уменьшается.

Заземляющие поверхности также позволяют передавать высокоскоростные цифровые и аналоговые сигналы с использованием технологий линий передач (полосковую или микрополосковую), там, где требуется получить определенное характеристическое сопротивление линии.

Использование шины-проводника в качестве заземления категорически неприемлемо из-за ее импеданса на частоте, соответствующей скорости переключения большинства логических схем. Например, провод калибра 22 стандарта AWG (American Wire Gauge), что соответствует диаметру 0,64 мм, обладает индуктивностью около 20 нГн/дюйм. Проходящий по этому проводу ток, вызванный логическим сигналом и имеющий скорость нарастания 10 мА/нс, будет создавать импульс напряжения величиной в 200 мВ на 1 дюйм провода:

[image]

Для сигналов, имеющих размах 2 В, это означает ошибку около 200 мВ или 10% (точность приблизительно 3.5 разряда). Даже в полностью цифровых схемах эта ошибка будет означать значительное уменьшение запаса помехоустойчивости.

Рис. 10.13 иллюстрирует ситуацию, когда цифровой ток, возвращающийся по шине "земли", модулирует аналоговый возвратный ток (верхний рисунок). Индуктивность и сопротивление провода, по которому течет обратный ток, являются общими для аналоговой и цифровой схем, это и является причиной взаимодействия и приводит к помехам. Одно из возможных решений – заставить обратный ток идти прямо к общей точке GND REF, как показано на нижнем рисунке. Это – иллюстрация фундаментальной концепции заземления «звездой» или системы с одной точкой заземления. Реализовать настоящее одноточечное заземление в системе, которая содержит большое количество высокочастотных трактов, сложно, т.к. физическая длина каждого провода, по которому течет обратный ток, будет вносить паразитное сопротивление и индуктивность, которые могут сделать затруднительным обеспечение низкоимпедансного заземления для токов высокой частоты. На практике тракт возвратного тока должен включать в себя заземляющие поверхности большой площади для того, чтобы обеспечить низкое сопротивления для высокочастотных токов. Таким образом, без низкоимпедансной заземляющей поверхности практически невозможно избежать появления общего для аналоговой и цифровой схем тракта заземления, особенно на высоких частотах.

Все выводы заземления микросхем должны соединяться с помощью пайки прямо с низкоимпедансной заземляющей поверхностью с целью минимизировать последовательную индуктивность и сопротивление. Использование традиционных панелек (разъемов) для микросхем в высокоскоростных устройствах не рекомендуется. Добавочная индуктивность и емкость даже «низкопрофильных» панелек может привести к нарушению работы схемы из-за появления дополнительных трактов. Если панельки всё же должны быть использованы с микросхемой в DIP-корпусе, например, при конструировании прототипа, то имеет смысл использовать «панельку-разъем» или наборную панельку из отдельных гнезд. Существуют панельки-разъемы со встроенным развязывающим конденсатором или без него (по каталогу AMP № 5-330808-3 и 5-330808-6). Они имеют позолоченные пружинные контакты, которые обеспечивают хорошее электрическое и механическое соединение с выводами ИС. Однако многократное использование может ухудшить их параметры.

Выводы питания должны быть развязаны прямо на заземляющую поверхность с помощью низкоиндуктивных керамических конденсаторов для поверхностного монтажа (SMD). Если используется конденсатор для обычного монтажа, то его выводы должны иметь длину не более 1 мм. Керамические конденсаторы должны быть расположены как можно ближе к выводам питания микросхемы. Для дополнительной развязки могут также потребоваться ферритовые бусины.

 

ЦИФРОВЫЕ ТОКИ, ПРОХОДЯЩИЕ ПО АНАЛОГОВОМУ ВОЗВРАТНОМУ ТРАКТУ, СОЗДАЮТ НАПРЯЖЕНИЕ ОШИБКИ 

[image]

 

ДВУСТОРОННЯЯ ИЛИ МНОГОСЛОЙНАЯ ПЕЧАТНАЯ ПЛАТА

Каждая печатная плата в системе должна иметь хотя бы один слой, полностью отведенный под заземляющую поверхность. В идеале двусторонняя плата должна иметь одну сторону, полностью отведенную под заземление и вторую – для различных соединений. На практике это невозможно, т.к. частично заземляющая поверхность, разумеется, должна быть удалена для отведения места под дорожки питания и сигналов, межслойные переходы и сквозные монтажные отверстия. Тем не менее как можно больше площади заземляющей поверхности должно быть сохранено, хотя бы 75% необходимо оставить. После окончания предварительной разводки платы поверхность заземления должна быть аккуратно проверена для того, чтобы убедиться, что не осталось изолированных "островков" заземления, т.к. выводы заземления микросхем, расположенные на таких островках, не будут иметь связи с заземляющей поверхностью. Также заземляющая поверхность должна быть проверена на предмет слишком тоненьких соединений между соседними большими площадями, которые могут значительно уменьшить эффективность заземляющей поверхности. Можно даже и не говорить, что при автоматической разводке платы обычно возникают неполадки в работе устройства со смешанными сигналами, поэтому настоятельно рекомендуем доводить плату вручную.

Системы, в которых интегральные микросхемы для поверхностного монтажа расположены тесно, будут иметь большое число соединений, поэтому здесь нужно использовать многослойные платы. Это позволит хотя бы один слой полностью отвести под заземление. В простой 4-слойной плате два внутренних слоя обычно используются для заземляющей поверхности и поверхности питания, а два внешних слоя – для выполнения соединений между установленными компонентами. Расположение питающей и заземляющей поверхностей в соседних слоях обеспечивает дополнительную межповерхностную емкость, которая способствует высокочастотной развязке тока питания. В большинстве систем четырех слоев недостаточно, и требуются дополнительные слои для трассировки линий сигналов, а также питания.

 

БЕЗ ЗАЗЕМЛЯЮЩИХ ПОВЕРХНОСТЕЙ НЕ ОБОЙТИСЬ! 

  • Используйте для заземления (и питания) поверхности большой площади, чтобы обеспечить низкоимпедансный путь для возвратного тока (Необходимо использовать как минимум двустороннюю плату!)

 

Двусторонние платы:

  • Избегайте многочисленных сквозных соединений и межслойных переходов, из-за которых уменьшается площадь поверхности заземления

  • Отводите под заземление не менее 75% площади одной стороны платы

 

Многослойные платы:

  • Отведите как минимум один слой под поверхность заземления

  • Отведите как минимум один слой под поверхность питания

  • Используйте по меньшей мере 30 – 40% выводов соединителя печатной платы для заземления

  • Продолжайте поверхность заземления на материнскую плату до источника питания

 

 

МНОГОПЛАТНЫЕ СИСТЕМЫ СО СМЕШАННЫМИ СИГНАЛАМИ

Лучший способ минимизировать импеданс заземления в многоплатной системе – использовать "материнскую плату" в качестве объединительной для организации соединения между платами, и, кроме того, обеспечить продолжение заземляющей поверхности на общую плату. В соединителе печатной платы хотя бы 30-40% выводов должно быть отведено под заземление, и эти выводы должны быть связаны с заземляющей поверхностью на материнской объединяющей плате. Для окончательного завершения устройства заземления системы существуют два способа:

1. Заземляющая поверхность на объединяющей плате может быть соединена с "землей" монтажной панели (шасси) во многих точках, таким образом равномерно распределяя различные пути возвратного тока. Этот способ обычно называется "многоточечным" заземлением и его схема показана на рис. 10.15.

2. Заземляющая поверхность может быть подключена по схеме "звезды" к единственной в системе точке заземления (обычно вблизи источника питания).

 

КОНЦЕПЦИЯ МНОГОТОЧЕЧНОГО ЗАЗЕМЛЕНИЯ

[image]

Первый подход чаще всего используется в чисто цифровых системах, но может быть использован и в системах со смешанными сигналами, если токи заземления цифровых схем достаточно малы и распределены на больших площадях. Низкий импеданс заземления обеспечивается на всем пути по плате, по объединяющей плате и далее по монтажной панели (шасси). Однако очень важно поддерживать хорошее электрическое соединение в местах, где "земля" связана с металлической монтажной панелью. Для этого необходимы металлические винты-"саморезы" или шайбы с насечками. Особое внимание соединению должно быть уделено там, где в качестве материала монтажной панели используется алюминий, т.к. его поверхность проявляет себя как изолятор.

Второй подход (заземление "звездой") часто используется в высокоскоростных системах с смешанными сигналами, имеющих отдельные аналоговую и цифровую системы заземления, и ниже обсуждается более подробно.

 

РАЗДЕЛЕНИЕ АНАЛОГОВОГО И ЦИФРОВОГО ЗАЗЕМЛЕНИЯ

В системах со смешанными сигналами с большим числом цифровых схем весьма желательно физически отделить чувствительные аналоговые компоненты от шумных цифровых компонентов. Также пойдет на пользу использование раздельных заземляющих поверхностей для аналоговых и цифровых схем. Эти поверхности не должны перекрываться для того, чтобы уменьшить емкостную связь между ними. Раздельные аналоговая и цифровая заземляющие поверхности продолжаются на объединительной плате с использованием или заземляющей поверхности материнской платы, или "экранирующего заземления", которое выполняется при помощи проводов заземления, чередующимися в разъёме с сигнальными проводами. На структурной схеме, показанной на рис.10.16, видно, что две заземляющих поверхности на всем своем протяжении идут отдельно до точки заземления "звездой", которая обычно располагается около источника питания. Соединение заземляющих поверхностей и источника питания в точке заземления "звездой" должно быть выполнено с помощью многочисленных шин или толстого медного жгута для минимизации сопротивления и индуктивности. Пара встречно-параллельных диодов Шотки имеется на каждой печатной плате для предотвращения случайного появления постоянного напряжения между двумя заземляющими системами в момент, когда платы вставляются или вынимаются. Это напряжение не должно превышать 300 мВ, чтобы избежать выхода из строя ИС, которая подключена как к аналоговой, так и к цифровой заземляющим поверхностям. Предпочтительно использовать диоды Шотки, так как они имеют малую емкость и малое падение напряжения в режиме прямого тока. Низкая емкость позволяет избежать связи по переменному току между аналоговой и цифровой заземляющими поверхностями. Диоды Шотки начинают проводить при прямом напряжении около 300 мВ, и если ожидаются большие токи, может понадобиться несколько параллельно соединенных диодов. В некоторых случаях вместо диодов Шотки могут быть использованы дроссели с ферритовыми бусинами, однако они вызывают появление паразитных контуров с замыканием через "землю" по постоянному току, которые могут вызвать проблемы в прецизионных системах. 

РАЗДЕЛЕНИЕ АНАЛОГОВОЙ И ЦИФРОВОЙ ЗАЗЕМЛЯЮЩИХ ПОВЕРХНОСТЕЙ

[image]

Обязательно нужно обеспечить сопротивление заземляющих поверхностей как можно меньшим на всем пути к точке заземления "звездой". Переменное или постоянное напряжение более чем 300 мВ между двумя заземляющими поверхностями может не только вывести из строя ИС, но и вызвать ошибочное включение логического элемента и, возможно, переход в фиксированное состояние.

ЗАЗЕМЛЕНИЕ И РАЗВЯЗКА ИС СО СМЕШАННЫМИ СИГНАЛАМИ И НЕБОЛЬШИМИ ЦИФРОВЫМИ ТОКАМИ

Чувствительные аналоговые компоненты, такие как усилители и источники опорного напряжения, всегда подключаются и развязываются на аналоговой заземляющей поверхности. АЦП и ЦАП (и другие ИС со смешанными сигналами) с небольшими цифровыми токами обычно должны рассматриваться как аналоговые компоненты и также заземлены и развязаны на аналоговой заземляющей поверхности. На первый взгляд это может показаться несколько противоречивым, т.к. преобразователь имеет и аналоговый и цифровой интерфейс, и он имеет выводы, обычно обозначенные как аналоговое заземление (AGND) и цифровое заземление (DGND). Схема, показанная на рисунке 10.17 поможет разобраться с этим кажущимся затруднением.

 

ПРАВИЛЬНОЕ ЗАЗЕМЛЕНИЕ МИКРОСХЕМЫ СО СМЕШАННЫМИ СИГНАЛАМИ С НЕБОЛЬШИМИ ЦИФРОВЫМИ ТОКАМИ

[image]

Внутри микросхем, которые имеют как аналоговую так и цифровую схемы, например АЦП или ЦАП, "земли" обычно разделяются для предотвращения влияния цифровых сигналов на аналоговую часть. На рис.10.17 показана упрощенная модель преобразователя. Проектировщик ИС ничего не может поделать с индуктивностью и сопротивлением соединений, идущих от контактов на кристалле к выводам корпуса ИС, только оставить их как есть. Цифровые токи, имеющие резкие перепады, создают напряжение в точке В, которое неизбежно передается в точку А аналоговой схемы через паразитную емкость СПАРАЗ. К тому же неизбежно присутствует паразитная емкость между каждым выводом корпуса ИС, равная приблизительно 0.2 пФ. И задача проектировщика ИС – заставить микросхему работать, несмотря на это. Однако для того, чтобы предотвратить дальнейшее влияние, выводы AGND и DGND должны быть соединены с аналоговой заземляющей поверхностью кратчайшим путем. Любое дополнительный импеданс в соединении DGND с "землей" приведет к образованию дополнительного цифрового шума в точке В, что, в свою очередь, наведет дополнительный цифровой шум в аналоговой схеме за счет паразитной емкости.

Обратите внимание, что при соединении DGND с цифровой заземляющей поверхностью напряжение шума VШУМА будет прикладываться между выводами AGND и DGND, что приведет к неудаче!

Обозначение вывода микросхемы как "DGND" говорит о том, что этот вывод связан с цепью заземления цифровой части ИС. Но это не подразумевает, что этот вывод должен быть соединен с цифровым заземлением системы.

Конечно, такая компоновка может привести к появлению небольшого цифрового шума в аналоговой заземляющей поверхности. Но эти токи обычно достаточно малы, и могут быть минимизированы, если гарантировать минимальную нагрузку на выходе преобразователя (обычно преобразователь и проектируется с маломощными выходами). Уменьшение нагрузки на цифровых выходах преобразователя, кроме того, сделает логические переходы сигнала на выходе преобразователя свободными от переходных процессов и минимизирует цифровые токи переключения, и таким образом уменьшит любое возможное влияние на аналоговую часть преобразователя. Вывод питания цифровой части (VD) может быть дополнительно изолирован от источника аналогового питания при помощи высокодобротного дросселя с ферритовой бусиной, как показано на рис.10.17. Внутренние импульсные цифровые токи преобразователя будут идти по небольшому контуру от VD через конденсатор развязки к DGND (этот путь показан на схеме толстой линией). Импульсные цифровые токи, таким образом, не появятся вне контура на аналоговой заземляющей поверхности, а будут циркулировать в контуре. Развязывающий конденсатор на выводе VD должен быть установлен как можно ближе к преобразователю, чтобы минимизировать паразитную индуктивность. В качестве данных конденсаторов должны быть применены низкоиндуктивные керамические конденсаторы, обычно величиной от 0.01 до 0.1 мкФ.

ВНИМАТЕЛЬНО ОТНЕСИТЕСЬ К ЦИФРОВОМУ ВЫХОДУ АЦП

Всегда полезно подключать буферный регистр к выходу преобразователя (как показано на рис. 10.17) с целью изолировать цифровые цепи преобразователя от шумов, присутствующих на шине данных. Данный регистр также служит для минимизации нагрузки на цифровых выходах преобразователя и действует как экран между этими цифровыми выходами и шиной данных. Даже несмотря на то, что многие преобразователи имеют входы/выходы с тремя состояниями, применение подобного изолирующего регистра остается оправданным. В некоторых случаях для обеспечения большей развязки может быть желательным добавление еще одного буферного регистра на аналоговой заземляющей поверхности после выхода преобразователя.

Последовательно включенный резистор (обозначенный символом R на рис. 10.17) между выходом АЦП и входом буферного регистра помогает минимизировать цифровые импульсные токи, которые могут повлиять на качество работы преобразователя. Этот резистор изолирует драйвер цифрового выхода преобразователя от входной емкости буферного регистра. Кроме того, RC-цепочка, образуемая резистором R и входной емкостью буферного регистра, действует как фильтр низкой частоты и таким образом сглаживает резкие фронты.

Типичный логический элемент КМОП в сочетании с дорожкой печатной платы и сквозным переходом образует емкостную нагрузку величиной около 10 пФ. Скорость переключения логического выхода величиной 1 В/нс вызовет импульс тока в 10 мА, если здесь не будет изолирующего резистора: 

[image]

Последовательно включенный резистор сопротивлением 500 Ом уменьшит данный выходной ток и в результате увеличит время нарастания и спада импульса до приблизительно 11 нс, если входная емкость регистра будет равна 10 пФ:

[image]

Регистров ТТЛ желательно избегать; они могут заметно увеличить динамические токи переключения, так как имеют большую входную емкость.

Буферный регистр и другие цифровые схемы должны быть заземлены и развязаны на цифровой заземляющей поверхности печатной платы. Обратите внимание, что любой шумовой сигнал между аналоговой и цифровой заземляющими поверхностями уменьшает запас помехоустойчивости цифрового интерфейса преобразователя. Так как запас помехоустойчивости цифровой схемы составляет порядка сотен или тысяч милливольт, это едва ли будет иметь значение. Аналоговая заземляющая поверхность обычно не бывает слишком "шумной", но если шум на цифровой заземляющей поверхности (относительно аналоговой заземляющей поверхности) превышает несколько сотен милливольт, то необходимо предпринять шаги для уменьшения импеданса цифровой заземляющей поверхности, таким образом обеспечивая приемлемый уровень запаса помехоустойчивости цифровой схемы. Ни при каких условиях напряжение между двумя заземляющими поверхностями не должно превышать 300 мВ, иначе ИС может выйти из строя.

Также весьма желательно наличие отдельных источников питания для аналоговой и цифровой схем. Для питания преобразователя необходим "аналоговый" источник питания. Если преобразователь имеет вывод, обозначенный как вывод питания цифровой части схемы (VD), он должен быть подключен или к отдельному "аналоговому" источнику питания, или подключен через фильтр, как показано на схеме. Все выводы питания преобразователя должны быть развязаны на аналоговой заземляющей поверхности, а все выводы питания цифровых схем должны быть развязаны на цифровой заземляющей поверхности, как показано на рис. 10.18. Если источник "цифрового" питания относительно тихий, он может оказаться вполне пригодным для питания аналоговых схем, но будьте очень внимательны.

В некоторых случаях не представляется возможным подключить вывод VD к источнику питания аналоговой части. Некоторые из новейших высокоскоростных ИС могут быть рассчитаны на работу аналоговой части при напряжении питания 5 В, в то время как цифровая часть питается от источника +3 В для того, чтобы быть совместимым с 3-вольтовой логикой. В этом случае вывод питания +3 В микросхемы должен быть развязан непосредственно на аналоговую заземляющую поверхность. Также будет благоразумно включить дроссель на ферритовой бусине последовательно с линией питания, которая подключена к выводу питания +3 В цифровой части ИС. 

ТОЧКИ ЗАЗЕМЛЕНИЯ И РАЗВЯЗКИ

[image]

Схема генератора тактовых импульсов должна рассматриваться как аналоговая схема также должна быть заземлена и тщательно разведена на аналоговой заземляющей поверхности. Фазовый шум генератора тактовых импульсов приводит к ухудшению отношения сигнал/шум (SNR) системы, как будет вкратце рассмотрено ниже.

О ГЕНЕРАТОРЕ ТАКТОВЫХ ИМПУЛЬСОВ

В высокопроизводительных системах дискретизации для генерации тактовых импульсов преобразования АЦП (или ЦАП) необходимо использовать кварцевый генератор с низким фазовым шумом, т.к. фазовый шум (jitter) тактового генератора модулирует аналоговый входной/выходной сигнал и увеличивает уровень шума и искажений. Генератор тактовых импульсов должен быть изолирован от шумных цифровых цепей и заземлен и развязан на аналоговой заземляющей поверхности, точно так же как операционные усилители и АЦП.

Действие фазового шума тактового генератора на отношение сигнал/шум (SNR) аналогово-цифрового преобразователя выражается следующей приблизительной формулой:

[image]

где SNR – это отношение сигнал/шум идеального АЦП с бесконечным разрешением, в котором единственным источником шума является шум, вызванный фазовым шумом тактового генератора со среднеквадратичным значением tj. Обратите внимание, что f в приведенном уравнении означает частоту аналогового входного сигнала. Приведем простой пример. Пусть среднеквадратичное значение tj = 50 пс, f = 100 кГц, тогда отношение сигнал/шум SNR = 90 dB, что соответствует 15-разрядному динамическому диапазону.

Необходимо отметить, что tj в приведенном уравнении – это корень из суммы квадратов величин фазового шума внешнего тактового генератора и фазового шума внутренних тактовых импульсов АЦП (называемого апертурным фазовым шумом). Однако в большинстве высокопроизводительных АЦП внутренний апертурный фазовый шум пренебрежимо мал по сравнению с фазовым шумом генератора тактовых импульсов.

Так как ухудшение соотношения сигнал/шум (SNR) в первую очередь связано с фазовым шумом внешнего тактового генератора, необходимо принять меры для того, чтобы генератор тактовых импульсов был насколько возможно малошумящим и имел наименьший из возможных фазовый шум. Это требует применения кварцевого генератора. Существует ряд производителей миниатюрных кварцевых генераторов с низким уровнем фазового шума (со среднеквадратичным значением менее 5 пс) и с КМОП-совместимым выходом. (Например, MF Electronics, 10 Commerce Dr., New Rochelle, NY 10801, Tel. 914-576-6570.)

В идеале кварцевый тактовый генератор должен находиться на аналоговой заземляющей поверхности в системе с раздельным заземлением. Однако это не всегда возможно по различным причинам. Во многих случаях тактовые импульсы преобразователя необходимо получить из более высокочастотных тактовых импульсов всей системы, которые генерируются на цифровой заземляющей поверхности. Затем эти импульсы должны идти от места их генерации на цифровой заземляющей поверхности к АЦП, находящемуся на аналоговой заземляющей поверхности. Шум между двумя заземляющими поверхностями добавляется непосредственно к тактовому сигналу и приводит к увеличению фазового шума. Этот фазовый шум может ухудшить соотношение сигнал/шум преобразователя, а также вызвать появление нежелательных гармоник. Данное явление иногда можно устранить, если передавать тактовые импульсы как дифференциальный сигнал с помощью либо небольшого высокочастотного трансформатора, как показано на рис. 10.19, либо с помощью быстродействующих интегральных микросхем дифференциального драйвера и приемника. Если используется активный дифференциальный драйвер и приемник, то они должны быть выполнены по технологии ECL, чтобы минимизировать фазовый шум. В системе с однополярным питанием +5 В микросхема ECL-логики может быть включена между шиной земли и питания +5 В (PECL), а сигнал с дифференциальных выходов преобразован для подачи на вход тактовых импульсов АЦП. В любом случае, изначальные тактовые импульсы должны быть генерированы с помощью кварцевого генератора с низким уровнем фазового шума.

 

ПЕРЕДАЧА ТАКТОВЫХ ИМПУЛЬСОВ С ЦИФРОВОЙ ЗАЗЕМЛЯЮЩЕЙ ПОВЕРХНОСТИ НА АНАЛОГОВУЮ

[image]

ИСТОЧНИКИ НЕУДАЧ ПРИ ЗАЗЕМЛЕНИИ СИСТЕМЫ СО СМЕШАННЫМИ СИГНАЛАМИ: ПРИМЕНЕНИЕ ОДНОПЛАТНОЙ СХЕМЫ ЗАЗЕМЛЕНИЯ К МНОГОПЛАТНОЙ СИСТЕМЕ

В большинстве технических описаний АЦП, ЦАП и других устройств со смешанными сигналами речь идет о заземлении на единственной печатной плате, обычно оценочной плате, разработанной тем же производителем, что и данная микросхема. Использование этого подхода к многоплатным системам или к системам с несколькими АЦП/ЦАП часто является источником неудач. Обычно рекомендуется разделять заземляющую поверхность печатной платы на аналоговую и цифровую. Далее рекомендуется выводы AGND и DGND преобразователя соединить вместе и соединить аналоговую заземляющую поверхность с цифровой в этой же точке, как показано на рис. 10.20. Это, в сущности, создает в устройстве со смешанными сигналами систему заземления "звезда".

Все шумные цифровые токи протекают от источника "цифрового" питания к цифровой заземляющей поверхности и обратно к "цифровому" источнику, они изолированы от чувствительной аналоговой части платы. Система заземления "звезда" образуется, когда аналоговая и цифровая заземляющие поверхности соединены вместе в той точке, где находится устройство со смешанными сигналами. Хотя этот подход обычно работает в простой системе с одной печатной платой и одним АЦП/ЦАП, он не является оптимальным для многоплатных систем со смешанными сигналами. В системе, имеющей несколько АЦП или ЦАП на различных печатных платах (или на одной, если хотите), аналоговая и цифровая поверхности получаются соединенными в нескольких точках, создавая возможность появления контуров заземления и делая систему заземления в одной точке "звездой" невозможной. По этим причинам такой подход к заземлению не рекомендуется для многоплатных систем; для ИС со смешанными сигналами и небольшими цифровыми токами должен использоваться метод, обсужденный выше.

ЗАЗЕМЛЕНИЕ ИС СО СМЕШАННЫМИ СИГНАЛАМИ: ОДНОПЛАТНАЯ СИСТЕМА (ТИПИЧНАЯ ОЦЕНОЧНАЯ/ТЕСТОВАЯ ПЛАТА)

[image]

ВЫВОДЫ: ЗАЗЕМЛЕНИЕ УСТРОЙСТВ СО СМЕШАННЫМИ СИГНАЛАМИ И МАЛЕНЬКИМИ ЦИФРОВЫМИ ТОКАМИ В МНОГОПЛАТНЫХ СИСТЕМАХ

Схема на рис. 10.21 обобщает ранее описанный подход к заземлению в устройствах со смешанными сигналами и небольшими цифровыми токами. На аналоговую заземляющую поверхность помехи не проникают, т.к. небольшие импульсные цифровые токи протекают по небольшому контуру между VD, развязывающим конденсатором и DGND (показано жирной линией).Устройство со смешанными сигналами любого назначения рассматривается как аналоговый компонент. Шум VN между заземляющими поверхностями уменьшает запас помехоустойчивости в цифровом интерфейсе, но обычно он не вреден, если поддерживать его на уровне менее 300 мВ с помощью низкоимпедансной цифровой заземляющей поверхности на всем пути к точке заземления системы "звездой".

Однако устройства со смешанными сигналами, такие как сигма-дельта АЦП, кодеки и DSP со встроенными аналоговыми функциями, становятся все более и более насыщенными цифровыми схемами. Вместе с дополнительными цифровыми схемами цифровые токи и шумы становятся больше. Например, сигма-дельта АЦП или ЦАП содержат сложный цифровой фильтр, который существенно увеличивает цифровой ток в устройстве. Метод, который был обсужден ранее, заключался в помещении развязывающего конденсатора между VD и DGND с целью удерживать цифровые токи замкнутыми и изолированными в небольшом контуре. Однако если цифровые токи достаточно большие и имеют постоянную или низкочастотную составляющую, развязывающий конденсатор, возможно, должен будет иметь неприемлемо большую емкость. Любой цифровой ток, который протекает вне контура между VD и DGND, вынужден будет проходить через аналоговую заземляющую поверхность. Это может отрицательно повлиять на работу системы, особенно в системах с высоким разрешением.

ЗАЗЕМЛЕНИЕ ИС СО СМЕШАННЫМИ СИГНАЛАМИ С НЕБОЛЬШИМИ ВНУТРЕННИМИ ЦИФРОВЫМИ ТОКАМИ: МНОГОПЛАТНАЯ СИСТЕМА

[image]

Трудно заранее сказать, какая величина цифрового тока, текущего по аналоговой заземляющей поверхности, будет неприемлема для системы. Все, что мы можем сделать в связи с этим – это предложить альтернативный метод заземления, который, возможно, обеспечит лучшую производительность.

ВЫВОДЫ: ЗАЗЕМЛЕНИЕ УСТРОЙСТВ СО СМЕШАННЫМИ СИГНАЛАМИ С БОЛЬШИМИ ЦИФРОВЫМИ ТОКАМИ В МНОГОПЛАТНОЙ СИСТЕМЕ

Альтернативный метод заземления для устройств со смешанными сигналами и большими цифровыми токами показан на рис. 10.22. Вывод AGND устройства со смешанными сигналами связывается с аналоговой заземляющей поверхностью, а вывод DGND этого устройства связывается с цифровой заземляющей поверхностью. Цифровые токи изолированы от аналоговой заземляющей поверхности, но шум между двумя заземляющими поверхностями прикладывается прямо между выводами AGND и DGND устройства. Чтобы этот метод был успешным, аналоговые и цифровые схемы в устройстве со смешанными сигналами должны быть хорошо изолированы. Шум между выводами AGND и DGND не должен быть настолько большим, чтобы уменьшить запас помехоустойчивости или вызвать нарушение работы внутренних аналоговых схем.

 

ЗАЗЕМЛЕНИЕ ИС СО СМЕШАННЫМИ СИГНАЛАМИ С НЕБОЛЬШИМИ ВНУТРЕННИМИ ЦИФРОВЫМИ ТОКАМИ: МНОГОПЛАТНАЯ СИСТЕМА

[image]

На рис.10.22 показано место возможного включения встречно-параллельных диодов Шоттки или дросселя на ферритовой бусине для соединения аналоговой и цифровой заземляющих поверхностей. Диоды Шоттки предотвращают появление больших постоянных напряжений или низкочастотных выбросов напряжения между двумя поверхностями. Эти напряжения могут даже повредить ИС со смешанными сигналами, если они превысят 300 мВ, потому что они появляются непосредственно между выводами AGND и DGND. Как альтернатива диодам Шотки дроссель на ферритовой бусинке обеспечивает связь по постоянному току между этими двумя поверхностями, но изолирует их на частотах выше нескольких мегагерц, на которых дроссель-бусинка обретает импеданс. Это защищает ИС от появления постоянного напряжения между выводами AGND и DGND, но связь по постоянному току, обеспечиваемая соединением с ферритовой бусинкой, может привести к появлению нежелательного контура заземления по постоянному току, что может быть неприемлемо для систем высокого разрешения.

ЗАЗЕМЛЕНИЕ ЦИФРОВЫХ ПРОЦЕССОРОВ ОБРАБОТКИ СИГНАЛОВ (DSP) С ВНУТРЕННИМИ СИСТЕМАМИ ФАПЧ

Как и при рассмотрении ИС со смешанными сигналами, где просто заземления AGND и DGND было недостаточно, новые процессоры цифровой обработки сигналов (DSP), такие как ADSP-21160 SHARC со встроенной системой ФАПЧ, увеличивают требования к проектированию заземления. Система ФАПЧ ADSP-21160 позволяет внутреннему генератору ядра (определяющему время выполнения инструкций) работать на частоте в 2, 3 или 4 раза (по выбору) превышающей частоту внешнего генератора CLKIN. CLKIN – это частота, на которой работают синхронные внешние порты. Хотя это позволяет использовать внешний генератор более низкой частоты, нужно быть внимательным при соединении питания и заземления с внутренней системой ФАПЧ, как показано на рис.10.23.

ЗАЗЕМЛЕНИЕ DSP СО ВСТРОЕННОЙ СИСТЕМОЙ ФАЗОВОЙ АВТОПОДСТРОЙКИ ЧАСТОТЫ (ФАПЧ)

[image]

Для предотвращения внутреннего влияния цифровых токов на систему ФАПЧ соединения ФАПЧ с питанием и заземлением производятся отдельно на выводах, отмеченных AVDD и AGND соответственно. Питание AVDD +2.5 В должно получаться от питания VDD INT +2.5 В при помощи фильтрующей цепочки, как показано. Это обеспечивает сравнительно бесшумное питание внутренней системы ФАПЧ. Вывод AGND системы ФАПЧ должен быть соединен с цифровой заземляющей поверхностью печатной платы кратчайшим путем. Развязывающие конденсаторы должны быть помещены также на минимальном расстоянии между выводами AVDD и AGND.

 

ВЫВОДЫ ПО ЗАЗЕМЛЕНИЮ

Не существует единого метода заземления, гарантирующего 100% оптимальную работу в любом случае. В этом разделе было представлено несколько возможных вариантов, в зависимости от требуемых характеристик отдельных устройств со смешанными сигналами. Они все применимы, однако предусматривают много возможных вариантов разводки печатной платы.

Обязательно хотя бы один слой платы должен быть отведен под заземляющую поверхность! Предварительное размещение компонентов нужно делать так, чтобы обеспечивать непересекающиеся аналоговую и цифровую поверхности, а в нескольких местах должны быть предусмотрены контактные площадки и межслойные переходы для установки встречно-параллельных диодов Шоттки или дросселей с ферритовыми бусинками, если потребуется. Также должны быть предусмотрены контактные площадки и межслойные переходы, чтобы аналоговая и цифровая поверхности могли быть связаны вместе перемычкой, если потребуется.

Выводы AGND устройств со смешанными сигналами обычно должны быть соединены с аналоговой заземляющей поверхностью. Исключение из этого правила – цифровые процессоры обработки сигналов (DSP), такие как ADSP-21160 SHARC, в которых имеются внутренние системы фазовой автоподстройки частоты (ФАПЧ). Вывод заземления ФАПЧ отмечен как AGND, но должен быть соединен напрямую с цифровой заземляющей поверхностью для DSP.

КРАТКАЯ ФИЛОСОФИЯ ЗАЗЕМЛЕНИЯ

  • Не существует единого метода заземления, который гарантировал бы 100% результат во всех случаях!

  • Одного и того же результата можно добиться различными методами.

  • Хотя бы один слой на каждой плате ДОЛЖЕН быть отведен под заземляющую поверхность!

  • Делайте предварительную компоновку так, чтобы аналоговая и цифровая заземляющие поверхности были разделены.

  • Предусмотрите на плате контактные площадки и межслойные переходы для встречно-параллельных диодов Шоттки или, возможно, дросселей с ферритовыми бусинками для соединения заземляющих поверхностей друг с другом.

  • Предусмотрите устанавливаемые перемычки таким образом, чтобы выводы DGND устройств со смешанными сигналами могли быть связаны с выводами AGND (с аналоговой заземляющей поверхностью) или с цифровой заземляющей поверхностью. (AGND ФАПЧ в DSP должны быть связаны с цифровой заземляющей поверхностью).

  • Обеспечьте контактные площадки и межслойные переходы для устанавливаемых перемычек таким образом, чтобы аналоговые и цифровые заземляющие поверхности могли быть соединены вместе в нескольких точках на каждой плате.

  • Следуйте рекомендациям технических описаний по устройствам со смешанными сигналами.

 

НЕКОТОРЫЕ ОБЩИЕ ПРАВИЛА КОМПОНОВКИ ПЛАТЫ ДЛЯ СИСТЕМ СО СМЕШАННЫМИ СИГНАЛАМИ

Очевидно, что шум может быть минимизирован при тщательной компоновке устройства и при минимизации влияния различных сигналов друг на друга. Аналоговые сигналы высокого и низкого уровней должны быть разделены, и те и другие должны размещаться отдельно от цифровых сигналов. Часто бывает, что в системах с преобразованием сигнала в цифровую форму и обратно сигнал тактовых импульсов (являющийся цифровым сигналом) так же чувствителен к шуму, как любой аналоговый сигнал, но он в то же время способен создавать шум, как и любой цифровой сигнал, поэтому должен быть изолирован как от аналоговых, так и от цифровых систем. Если для выработки тактовых импульсов используется ИС, то только одна частота должна вырабатываться одной ИС. Совмещение тактовых генераторов различной частоты в одной ИС приведет к появлению дополнительного фазового шума и взаимных помех и ухудшит производительность системы.

Заземляющая поверхность может работать как экран, где пересекаются чувствительные сигналы. На рисунке 10.25 показана хорошая компоновка платы сбора данных, где все чувствительные области изолированы друг от друга и пути сигналов укорочены насколько возможно. В тех редких случаях, когда в реальности все так же идеально, этот принцип действует.

АНАЛОГОВЫЕ И ЦИФРОВЫЕ СХЕМЫ ДОЛЖНЫ РАСПОЛАГАТЬСЯ НА ПЕЧАТНОЙ ПЛАТЕ РАЗДЕЛЬНО

[image]

Существует ряд важных точек, на которые надо обратить внимание при выполнении соединений питания и сигналов. Во первых, разъем – это одно из мест в системе, где все сигнальные провода должны идти параллельно – значит нужно обязательно перемежать их с проводами заземления (создать электростатический экран), чтобы уменьшить взаимодействие между ними.

Множество выводов заземления важно по еще одной причине: они обеспечивают низкое сопротивление заземления в соединении платы устройства с остальной схемой. Контактное сопротивление одного вывода соединителя печатной платы достаточно низкое (порядка 10 мОм) когда плата новая, когда же плата стареет, сопротивление контактов может увеличиться, и работа платы может быть нарушена. Поэтому очень рекомендуется использовать дополнительные контакты разъема печатной платы так, чтобы было достаточно много соединений заземления (хотя бы 30-40% от всех контактов разъема печатной платы должны быть контактами заземления). По тем же причинам должно быть несколько контактов для каждого соединения питания, хотя, конечно, не так много, как контактов заземления.

Изготовители высокопроизводительных ИС со смешанными сигналами, такие как Analog Devices, предлагают оценочные платы для того, чтобы помочь заказчикам в их предварительных разработках и компоновке. Оценочные платы АЦП обычно содержат генератор тактовых импульсов с низким фазовым шумом, выходные регистры и необходимые соединения питания и сигналов. Они также могут содержать дополнительные вспомогательные схемы, такие как входной буферный усилитель и внешний источник опорного напряжения.

Компоновка оценочной платы оптимизируется по условиям заземления, развязки и разводки сигналов, и может служить образцом при компоновке платы АЦП в устройстве. Обычно получить разводку такой оценочной платы можно у производителя АЦП в формате САПР (Gerber). Во многих случаях разводка различных слоев показана в технической документации на устройство.

 

СПИСОК ЛИТЕРАТУРЫ ПО ЗАЗЕМЛЕНИЮ:

1. William C. Rempfer, Get All the Fast ADC Bits You Pay For, Electronic Design, Special Analog Issue, June 24, 1996, p.44.

2. Mark Sauerwald, Keeping Analog Signals Pure in a Hostile Digital World, Electronic Design, Special Analog Issue, June 24, 1996, p.57.

3. Jerald Grame and Bonnie Baker, Design Equations Help Optimize Supply Bypassing for Op Amps, Electronic Design, Special Analog Issue, June 24, 1996, p.9.

4. Jerald Grame and Bonnie Baker, Fast Op Amps Demand More Than a Single-Capacitor Bypass, Electronic Design, Special Analog Issue, November 18, 1996, p.9.

5. Walt Kester and James Bryant, Grounding in High Speed Systems, High Speed Design Techniques, Analog Devices, 1996, Chapter 7, p. 7-27.

6. Jeffrey S. Pattavina, Bypassing PC Boards: Thumb Your Nose at Rules of Thumb, EDN, Oct. 22, 1998, p.149.

7. Henry Ott, Noise Reduction Techniques in Electronic Systems, Second Edition, New York, John Wiley and Sons, 1988.

8. Howard W. Johnson and Martin Graham, High-Speed Digital Design, PTR Prentice Hall, 1993.

9. Paul Brokaw, An I.C. Amplifier User's Guide to Decoupling, Grounding and Making Things Go Right for a Change, Application Note, Analog Devices, Inc., http://www.analog.com.

10. Walt Kester, A Grounding Philosophy for Mixed-Signal Systems, Electronic Design Analog Applications Issue, June 23, 1997, p. 29.

11. Ralph Morrison, Grounding and Shielding Techniques, Fourth Edition, John Wiley, 1998.

12. Ralph Morrison, Solving Interference Problems in Electronics, John Wiley, 1995.

13. C. D. Motchenbacher and J. A. Connelly, Low Noise Electronic System Design, John Wiley, 1993.

14. Crystal Oscillators: MF Electronics, 10 Commerce Drive, New Rochelle, NY, 10801, 914-576-6570.

15. Mark Montrose, EMC and the Printed Circuit Board, IEEE Press, 1999 (IEEE Order Number PC5756).